Practical selection of SVM parameters and noise estimation for SVM regression
نویسندگان
چکیده
We investigate practical selection of hyper-parameters for support vector machines (SVM) regression (that is, epsilon-insensitive zone and regularization parameter C). The proposed methodology advocates analytic parameter selection directly from the training data, rather than re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of insensitive zone epsilon, as a function of training sample size. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low- and high-dimensional regression problems. Further, we point out the importance of Vapnik's epsilon-insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression (using proposed selection of epsilon-values) with regression using 'least-modulus' loss (epsilon=0) and standard squared loss. These comparisons indicate superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise.
منابع مشابه
Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملSelection of Meta-parameters for Support Vector Regression
We propose practical recommendations for selecting metaparameters for SVM regression (that is, ε -insensitive zone and regularization parameter C). The proposed methodology advocates analytic parameter selection directly from the training data, rather than resampling approaches commonly used in SVM applications. Good generalization performance of the proposed parameter selection is demonstrated...
متن کاملSustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2004